论文标题
拓扑三角形晶格中两个成分铁杆玻色子的整数量子厅效应
Integer quantum Hall effect of two-component hardcore bosons in a topological triangular lattice
论文作者
论文摘要
我们研究了拓扑三角晶格模型中两部分硬核玻色子的多体基态。利用确切的对角度化和密度 - 静脉重新归一化组的计算,我们证明,在每个晶格位点相称的三分之二填充时,两种成分的玻色子整数量子霍尔(BIQH)效应出现了,相关的$ \ \ \\ mathbf {k} = k} = pmatrix = \ pmatrix {在强大的哈伯德排斥力下矩阵。 (i)具有稳健的光谱间隙的独特基态退化进一步阐明了拓扑性质,(ii)量化的拓扑结构量矩阵$ \ mathbf {c} = \ mathbf {k}^{ - 1} $,以及(iii)两个反向保险的边缘分支。此外,随着最近邻居排斥的增加,基态经历了从BIQH液体到相应的固体顺序的一阶过渡。
We study the many-body ground states of two-component hardcore bosons in topological triangular lattice models. Utilizing exact diagonalization and density-matrix renormalization group calculations, we demonstrate that at commensurate two-thirds filling per lattice site, two-component bosonic integer quantum hall (BIQH) effect emerges with the associated $\mathbf{K}=\begin{pmatrix} 0 & 1\\ 1 & 0\\ \end{pmatrix}$ matrix under strong intercomponent Hubbard repulsion. The topological nature is further elucidated by (i) a unique ground state degeneracy with a robust spectrum gap, (ii) a quantized topological Chern number matrix $\mathbf{C}=\mathbf{K}^{-1}$, and (iii) two counterpropagating edge branches. Moreover, with increasing nearest-neighbor repulsions, the ground state undergoes a first-order transition from a BIQH liquid to a commensurate solid order.