论文标题

用力定向算法和转移学习中WSN中的覆盖范围检测

Coverage hole detection in WSN with force-directed algorithm and transfer learning

论文作者

Lai, Yue-Hui, Cheong, Se-Hang, Zhang, Hui, Si, Yain-Whar

论文摘要

覆盖孔检测是无线传感器网络研究社区中的重要研究问题。但是,近年来提出的用于覆盖孔检测问题的分布式方法具有较高的计算复杂性。在本文中,我们提出了一种新的方法,用于在无线传感器网络中进行覆盖孔检测,称为FD-TL(实力定向和转移学习),该方法基于通过传递学习的卷积神经网络的实力定向算法的布局生成能力和图像识别能力。与现有方法相反,提出的方法是一种基于拓扑的方法,因为FD-TL可以根据输入网络拓扑从无线传感器网络中检测三角形和非三角形覆盖孔,而无需依赖锚节点的物理位置。在FD-TL中,使用了实力指导的算法来从给定的输入拓扑结构生成一系列可能的布局。接下来,使用卷积神经网络来识别产生的布局中的潜在覆盖孔。在训练阶段,使用转移学习方法来帮助识别过程。实验结果表明,FD-TL方法可以达到90%的敏感性,而无线传感器网络中覆盖孔检测的特异性为96%。

Coverage hole detection is an important research problem in wireless sensor network research community. However, distributed approaches proposed in recent years for coverage hole detection problem have high computational complexity. In this paper, we propose a novel approach for coverage hole detection in wireless sensor networks called FD-TL (Force-directed and Transfer-learning) which is based on layout generation capability of Force-directed Algorithms and image recognition power of Convolutional Neural Network with transfer learning. In contrast to existing approaches, the proposed approach is a pure topology-based approach since FD-TL can detect both triangular and non-triangular coverage holes from a wireless sensor network based on the input network topology without relying on the physical locations of the anchor nodes. In FD-TL, a Force-directed Algorithm is used to generate a series of possible layouts from a given input topology. Next, a Convolutional Neural Network is used to recognize potential coverage holes from the generated layouts. During the training phase, a transfer learning method is used to aid the recognition process. Experimental results show that FD-TL method can achieve 90% sensitivity and 96% specificity for coverage hole detection in wireless sensor networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源