论文标题

面向隐私和可验证的联合矩阵分解

Towards Privacy-Preserving and Verifiable Federated Matrix Factorization

论文作者

Wan, Xicheng, Zheng, Yifeng, Li, Qun, Fu, Anmin, Su, Mang, Gao, Yansong

论文摘要

近年来,联邦学习(FL)的迅速增长,这是一种新兴的隐私感知机器学习范式,可以通过在多个参与者中分发的孤立数据集进行协作学习。 FL的显着特征是,参与者可以将其私有数据集保留本地,而仅共享模型更新。最近,已经开始了一些研究工作,以探索FL对矩阵分解的适用性(MF),这是一种现代推荐系统和服务中使用的普遍方法。已经表明,在联合MF中共享梯度更新需要揭示用户个人评分的隐私风险,从而提出了保护共享梯度的需求。先前的艺术受到限制,因为它们会导致明显的准确性损失,或者依靠沉重的密码系统,并假定威胁模型较弱。在本文中,我们提出了VPFEDMF,这是一种旨在保护隐私和可验证的联合MF的新设计。 VPFEDMF通过轻巧且安全的聚合提供了单个梯度更新的机密性保证。此外,VPFEDMF雄心勃勃,并新支持联合MF中协调服务器产生的聚合结果的正确性验证。现实世界中电影评级数据集的实验证明了VPFEDMF在计算,通信和准确性方面的实际性能。

Recent years have witnessed the rapid growth of federated learning (FL), an emerging privacy-aware machine learning paradigm that allows collaborative learning over isolated datasets distributed across multiple participants. The salient feature of FL is that the participants can keep their private datasets local and only share model updates. Very recently, some research efforts have been initiated to explore the applicability of FL for matrix factorization (MF), a prevalent method used in modern recommendation systems and services. It has been shown that sharing the gradient updates in federated MF entails privacy risks on revealing users' personal ratings, posing a demand for protecting the shared gradients. Prior art is limited in that they incur notable accuracy loss, or rely on heavy cryptosystem, with a weak threat model assumed. In this paper, we propose VPFedMF, a new design aimed at privacy-preserving and verifiable federated MF. VPFedMF provides guarantees on the confidentiality of individual gradient updates through lightweight and secure aggregation. Moreover, VPFedMF ambitiously and newly supports correctness verification of the aggregation results produced by the coordinating server in federated MF. Experiments on a real-world movie rating dataset demonstrate the practical performance of VPFedMF in terms of computation, communication, and accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源