论文标题
在时空图形神经网络中,基于深度的不确定性定量,用于交通预测
Deep-Ensemble-Based Uncertainty Quantification in Spatiotemporal Graph Neural Networks for Traffic Forecasting
论文作者
论文摘要
基于深度学习的数据驱动预测方法为流量预测带来了令人印象深刻的结果。但是,这些方法的主要局限性是它们提供预测而没有估计不确定性的预测,这对于实时部署至关重要。我们专注于扩散卷积复发性神经网络(DCRNN),这是一种用于短期流量预测的最新方法。我们开发了可扩展的深层合奏方法来量化DCRNN的不确定性。我们的方法使用可扩展的贝叶斯优化方法执行超参数优化,选择一组高性能配置,拟合生成模型以捕获超参数配置的关节分布,并通过从生成模型的一组新型的高参数配置来训练模型集合。我们通过将它们与其他不确定性估计技术进行比较来证明这些方法的功效。我们表明,我们的通用和可扩展方法的表现优于当前的最新贝叶斯人和许多其他常用的常见技术。
Deep-learning-based data-driven forecasting methods have produced impressive results for traffic forecasting. A major limitation of these methods, however, is that they provide forecasts without estimates of uncertainty, which are critical for real-time deployments. We focus on a diffusion convolutional recurrent neural network (DCRNN), a state-of-the-art method for short-term traffic forecasting. We develop a scalable deep ensemble approach to quantify uncertainties for DCRNN. Our approach uses a scalable Bayesian optimization method to perform hyperparameter optimization, selects a set of high-performing configurations, fits a generative model to capture the joint distributions of the hyperparameter configurations, and trains an ensemble of models by sampling a new set of hyperparameter configurations from the generative model. We demonstrate the efficacy of the proposed methods by comparing them with other uncertainty estimation techniques. We show that our generic and scalable approach outperforms the current state-of-the-art Bayesian and a number of other commonly used frequentist techniques.