论文标题
粘土中受限离 - 水结构和纳米级表面力的离子特异性
Ion specificity of confined ion-water structuring and nanoscale surface forces in clays
论文作者
论文摘要
离子特异性和相关的Hofmeister效应(在水性系统中无处不在)可以在水合粘土中产生壮观的后果,在该粘土中,离子特异性的纳米级表面力可以确定土壤和沉积物的大规模内聚力,肿胀和收缩行为。我们已经使用了一种半原子计算方法,并检查了代表粘土材料的带电表面之间的水,钙,钙和铝制柜台,以表明纳米级限制中的离子 - 水结构是粘土颗粒之间的表面力的起源,这些粘土颗粒具有内在的离子特异性。当带电的表面强烈限制离子和水时,净压力的幅度和振荡自然而然地从静电和空间效应的相互作用中出现,现有理论无法捕获。越来越多的限制和表面电荷密度促进了越来越多的离子水结构,这些结构越来越偏离离子的大块水合壳,强烈各向异性和持久性,并自组织成优化的,几乎没有任何自由水的优化,几乎固体的组件。在这些条件下,由于水的介电筛选和高度有组织的水离子结构,充电表面之间的相互作用很大。通过阐明这些纳米级相互作用的离子特异性,我们提供了证据,表明由限制确定的离子特异性溶剂化结构是粘土中离子特异性的起源,并且可能是更广泛的约束水系统。
Ion specificity and related Hofmeister effects, ubiquitous in aqueous systems, can have spectacular consequences in hydrated clays, where ion-specific nanoscale surface forces can determine large scale cohesive, swelling and shrinkage behaviors of soil and sediments. We have used a semi-atomistic computational approach and examined sodium, calcium and aluminum counterions confined with water between charged surfaces representative of clay materials, to show that ion-water structuring in nanoscale confinement is at the origin of surface forces between clay particles which are intrinsically ion-specific. When charged surfaces strongly confine ions and water, the amplitude and oscillations of the net pressure naturally emerge from the interplay of electrostatics and steric effects, which can not be captured by existing theories. Increasing confinement and surface charge densities promote ion-water structures that increasingly deviate from the ions' bulk hydration shells, being strongly anisotropic and persistent, and self-organizing into optimized, nearly solid-like assemblies where hardly any free water is left. In these conditions, strongly attractive interactions can prevail between charged surfaces, due to the dramatically reduced dielectric screening of water and the highly organized water-ion structures. By unravelling the ion-specific nature of these nanoscale interactions, we provide evidence that ion-specific solvation structures determined by confinement are at the origin of ion specificity in clays and potentially a broader range of confined aqueous systems.