论文标题

从观察数据中估算社会影响

Estimating Social Influence from Observational Data

论文作者

Sridhar, Dhanya, De Bacco, Caterina, Blei, David

论文摘要

我们考虑了估计社会影响力的问题,即一个人的行为对同龄人的未来行为的影响。关键挑战是,朋友之间的共同行为可以通过影响力或其他两个混杂因素来解释:1)导致人们成为朋友并参与行为的潜在特征,以及2)对行为的潜在偏好。本文解决了三个贡献估算社会影响力的挑战。首先,我们将社会影响形式形式化为因果关系,这需要推断假设干预措施。其次,我们开发了泊松影响分解(PIF),这是一种从观察数据中估算社会影响的方法。 PIF将概率因子模型拟合到网络和行为数据中,以推断变量,这些变量可作为混淆潜在特征的替代品。第三,我们开发了PIF恢复社会影响的估计值的假设。我们从Last.FM的半合成和实际数据进行经验研究PIF,并进行灵敏度分析。我们发现,PIF与相关方法最准确地估计社会影响力,并且在某些违反其假设的行为下仍然坚固。

We consider the problem of estimating social influence, the effect that a person's behavior has on the future behavior of their peers. The key challenge is that shared behavior between friends could be equally explained by influence or by two other confounding factors: 1) latent traits that caused people to both become friends and engage in the behavior, and 2) latent preferences for the behavior. This paper addresses the challenges of estimating social influence with three contributions. First, we formalize social influence as a causal effect, one which requires inferences about hypothetical interventions. Second, we develop Poisson Influence Factorization (PIF), a method for estimating social influence from observational data. PIF fits probabilistic factor models to networks and behavior data to infer variables that serve as substitutes for the confounding latent traits. Third, we develop assumptions under which PIF recovers estimates of social influence. We empirically study PIF with semi-synthetic and real data from Last.fm, and conduct a sensitivity analysis. We find that PIF estimates social influence most accurately compared to related methods and remains robust under some violations of its assumptions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源