论文标题

应用:任何时间进行修剪

APP: Anytime Progressive Pruning

论文作者

Misra, Diganta, Runwal, Bharat, Chen, Tianlong, Wang, Zhangyang, Rish, Irina

论文摘要

随着深度学习的最新进展,由于其在实际环境中的相关性,因此非常关注在线学习范式。尽管已经研究了许多方法在数据流随着时间的流逝而连续的情况下进行了最佳学习设置,但是在这种设置中稀疏的网络培训经常被忽略。在本文中,我们探讨了在特定的在线学习情况下训练具有目标稀疏性的神经网络的问题:Macroscale Paradigm(ALMA)的任何时间学习。我们提出了一种新颖的渐进修剪方式,称为\ textit {任何时间进行渐进的修剪}(app);所提出的方法在短,中度和长期训练下的多个体系结构和数据集跨基线密集和任何时间的OSP模型大大优于基线密集。例如,我们的方法显示出$ \ 7 \%$的准确度的提高,并且将概括差距减少了$ \%$,而$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \约1/3 $ rd的大小是密集基线模型的大小,并在几次限制的Imagenet培训中。我们进一步观察到大量基于大型的ALMA的概括差距中有趣的非单调转变。代码和实验仪表板可以分别在\ url {https://github.com/landskape-ai/progressive-pruning}和\ url {https://wandb.ai/landskape/app}中访问。

With the latest advances in deep learning, there has been a lot of focus on the online learning paradigm due to its relevance in practical settings. Although many methods have been investigated for optimal learning settings in scenarios where the data stream is continuous over time, sparse networks training in such settings have often been overlooked. In this paper, we explore the problem of training a neural network with a target sparsity in a particular case of online learning: the anytime learning at macroscale paradigm (ALMA). We propose a novel way of progressive pruning, referred to as \textit{Anytime Progressive Pruning} (APP); the proposed approach significantly outperforms the baseline dense and Anytime OSP models across multiple architectures and datasets under short, moderate, and long-sequence training. Our method, for example, shows an improvement in accuracy of $\approx 7\%$ and a reduction in the generalization gap by $\approx 22\%$, while being $\approx 1/3$ rd the size of the dense baseline model in few-shot restricted imagenet training. We further observe interesting nonmonotonic transitions in the generalization gap in the high number of megabatches-based ALMA. The code and experiment dashboards can be accessed at \url{https://github.com/landskape-ai/Progressive-Pruning} and \url{https://wandb.ai/landskape/APP}, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源