论文标题

$ C_0(i)$的扭曲总和

Twisted sums of $c_0(I)$

论文作者

Castillo, Jesús M. F., Alarcón, Alberto Salguero

论文摘要

Banach Space $ x $带有$ C_0(κ)$的扭曲总和的论文研究属性。我们首先证明了这种扭曲的总和的表示定理,除其他外,我们还将获得以下内容:(a)$ c_0(i)$和$ c_0(κ)$的扭曲总和是$ \ ell_ \ ell_ \ infty(κ)$的子空间,或者是$ C_0(κ^+)$; (b)在假设$ [\ mathfrak p = \ mathfrak c] $下,当$ k $是合适的corson compact,可分离的罗斯塔尔紧凑型或有限高度的散落的紧凑型,有$ c(k)$的扭曲和$ c_0(κ)$,这不是连续函数的异构函数的$ c_0(κ)$; (c)当$ x $是lindenstrauss空间时,所有这些扭曲的总和都是lindenstrauss的空间,当$ x = c(k)$带有$ k $ convex时,$ g $ - 空格,这表明benyamini的结果是最佳的; (d)当$ x $是一个带有属性($ \ star $)的多面体空间时,它们是同构的多面体,该空间解决了Castillo和Papini的问题。

The paper studies properties of twisted sums of a Banach space $X$ with $c_0(κ)$. We first prove a representation theorem for such twisted sums from which we will obtain, among others, the following: (a) twisted sums of $c_0(I)$ and $c_0(κ)$ are either subspaces of $\ell_\infty(κ)$ or trivial on a copy of $c_0(κ^+)$; (b) under the hypothesis $[\mathfrak p = \mathfrak c]$, when $K$ is either a suitable Corson compact, a separable Rosenthal compact or a scattered compact of finite height, there is a twisted sum of $C(K)$ with $c_0(κ)$ that is not isomorphic to a space of continuous functions; (c) all such twisted sums are Lindenstrauss spaces when $X$ is a Lindenstrauss space and $G$-spaces when $X=C(K)$ with $K$ convex, which shows tat a result of Benyamini is optimal; (d) they are isomorphically polyhedral when $X$ is a polyhedral space with property ($\star$), which solves a problem of Castillo and Papini.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源