论文标题

医学图像细分的示例学习

Exemplar Learning for Medical Image Segmentation

论文作者

En, Qing, Guo, Yuhong

论文摘要

医疗图像注释通常需要专家知识,因此会增加耗时和昂贵的数据注释成本。为了减轻这种负担,我们提出了一种新颖的学习场景,例如示例学习(EL),以使用单个带注释的图像示例来探索医学图像分割的自动学习过程。这项创新的学习任务特别适合医学图像分割,其中所有类别的器官都可以单一图像显示并立即注释。为了解决这一具有挑战性的EL任务,我们提出了一个基于典范的学习综合网络(ELSNET)框架,以实现基于创新的典范数据综合,基于Pixel-Prototype的基于Pseudo-Label基于未标记的数据的剥削。具体而言,ELSNET介绍了两个用于图像分割的新模块:一个示例性引导的合成模块,通过从给定的示例中合成带注释的样本来丰富和多样化训练,并通过像素形成型的相反嵌入模块,从而增强了基础分割模型的歧视能力。此外,我们部署了一个两阶段的分割模型培训过程,该过程用预测的伪分段标签利用了未标记的数据。为了评估这个新的学习框架,我们对几个器官分割数据集进行了广泛的实验,并提供了深入的分析。经验结果表明,所提出的典范学习框架会产生有效的分割结果。

Medical image annotation typically requires expert knowledge and hence incurs time-consuming and expensive data annotation costs. To alleviate this burden, we propose a novel learning scenario, Exemplar Learning (EL), to explore automated learning processes for medical image segmentation with a single annotated image example. This innovative learning task is particularly suitable for medical image segmentation, where all categories of organs can be presented in one single image and annotated all at once. To address this challenging EL task, we propose an Exemplar Learning-based Synthesis Net (ELSNet) framework for medical image segmentation that enables innovative exemplar-based data synthesis, pixel-prototype based contrastive embedding learning, and pseudo-label based exploitation of the unlabeled data. Specifically, ELSNet introduces two new modules for image segmentation: an exemplar-guided synthesis module, which enriches and diversifies the training set by synthesizing annotated samples from the given exemplar, and a pixel-prototype based contrastive embedding module, which enhances the discriminative capacity of the base segmentation model via contrastive representation learning. Moreover, we deploy a two-stage process for segmentation model training, which exploits the unlabeled data with predicted pseudo segmentation labels. To evaluate this new learning framework, we conduct extensive experiments on several organ segmentation datasets and present an in-depth analysis. The empirical results show that the proposed exemplar learning framework produces effective segmentation results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源