论文标题
3D印刷多物质机械超材料的罕见事实合理设计的深度学习
Deep learning for the rare-event rational design of 3D printed multi-material mechanical metamaterials
论文作者
论文摘要
新兴的多物质3D打印技术为超材料的合理设计铺平了道路,不仅具有复杂的几何形状,而且还为这些几何形状中多种材料的任意分布。多种材料的空间分布的变化产生了各向异性弹性特性的许多有趣且潜在的独特组合。尽管设计方法可以覆盖弹性特性的所有可能组合的大部分组合本身很有趣,但找到极为罕见的设计会导致非常不寻常的材料特性组合(例如,双度性和高弹性模量),这一点更为重要。在这里,我们在常规晶格中使用了硬相和软相的随机分布来研究该网络的各向异性机械性能,尤其是上述稀有设计。接受的主要挑战是大量的设计参数和此类设计的极端挑战。因此,我们使用计算模型和深度学习算法来创建从设计参数的空间到机械性能空间的映射,从而(i)减少评估每个设计和评估不同设计的过程所需的计算时间。此外,我们选择了十种设计用于使用PolyJet多物质3D打印技术制造的设计,对它们进行了机械测试,并使用数字图像相关性(DIC,3个设计)对其行为进行了表征,以验证我们的计算模型的准确性。我们的模拟结果表明,基于深度学习的算法可以准确预测不同设计的机械性能,这些设计与实验中观察到的各种变形机制相匹配。
Emerging multi-material 3D printing techniques have paved the way for the rational design of metamaterials with not only complex geometries but also arbitrary distributions of multiple materials within those geometries. Varying the spatial distribution of multiple materials gives rise to many interesting and potentially unique combinations of anisotropic elastic properties. While the availability of a design approach to cover a large portion of all possible combinations of elastic properties is interesting in itself, it is even more important to find the extremely rare designs that lead to highly unusual combinations of material properties (e.g., double-auxeticity and high elastic moduli). Here, we used a random distribution of a hard phase and a soft phase within a regular lattice to study the resulting anisotropic mechanical properties of the network in general and the abovementioned rare designs in particular. The primary challenge to take up concerns the huge number of design parameters and the extreme rarity of such designs. We, therefore, used computational models and deep learning algorithms to create a mapping from the space of design parameters to the space of mechanical properties, thereby (i) reducing the computational time required for evaluating each designand (ii) making the process of evaluating the different designs highly parallelizable. Furthermore, we selected ten designs to be fabricated using polyjet multi-material 3D printing techniques, mechanically tested them, and characterized their behavior using digital image correlation (DIC, 3 designs) to validate the accuracy of our computational models. The results of our simulations show that deep learning-based algorithms can accurately predict the mechanical properties of the different designs, which match the various deformation mechanisms observed in the experiments.