论文标题
Lelong数量的$ M $ -Subharmonic功能沿Submanifolds
Lelong Numbers of $m$-Subharmonic Functions Along Submanifolds
论文作者
论文摘要
我们研究了一个复杂的submanifold $ v $ $ m $ -subharmonic函数$φ$的可能的奇异性,这是紧凑型kähler歧管的$ v $,发现仅取决于$ m $和$ k $的最大增长率,$ m $和$ k $,Codimension of $ v $。当$ k <m $时,我们表明$φ$沿$ v $沿最差的日志杆,并且这些极点的强度是沿$ v $的转向恒定。这可以将其视为SIU定理的类似物。
We study the possible singularities of an $m$-subharmonic function $φ$ along a complex submanifold $V$ of a compact Kähler manifold, finding a maximal rate of growth for $φ$ which depends only on $m$ and $k$, the codimension of $V$. When $k < m$, we show that $φ$ has at worst log poles along $V$, and that the strength of these poles is moveover constant along $V$. This can be thought of as an analogue of Siu's theorem.