论文标题

上限和下限在三角洲的跨数字和结的制表

Upper and lower bound on delta-crossing number and tabulation of knots

论文作者

Jablonowski, Michal

论文摘要

我们将加强三角形跨数字中三角洲的结中的已知上限和下边界。后者的结合足以获得几个结的三重数字(未知值)。我们还证明,在任何非平凡结或非分类链接的任何三连接的投影中,我们始终可以从四个缠结的集合中找到至少一个纠结。在最后一节中,我们列举并生成所有原始结的最小三角形图表,直至达到三角洲的数字等于四。我们还对整数值古典结之间的已知不平等现象进行了简洁的调查。

We will strengthen the known upper and lower bounds on the delta-crossing number of knots in therms of the triple-crossing number. The latter bound turns out to be strong enough to obtain (unknown values of) triple-crossing numbers for a few knots. We also prove that we can always find at least one tangle from the set of four tangles, in any triple-crossing projections of any non-trivial knot or non-split link. In the last section, we enumerate and generate tables of minimal delta-diagrams for all prime knots up to the delta-crossing number equal to four. We also give a concise survey about known inequalities between integer-valued classical knot invariants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源