论文标题
椭圆旋转Calogero-moser动力学描述的非手续中间体海森堡铁磁性方程的周期性解决方案
Periodic solutions of the non-chiral intermediate Heisenberg ferromagnet equation described by elliptic spin Calogero-Moser dynamics
论文作者
论文摘要
我们提出了一类定期解决方案的定期解决方案,用于赫森伯格·弗罗格内特(NCIHF)方程,最近由作者与兰曼一起引入,作为InozeMtSeV-Type型自旋链的经典,连续的限制。这些精确的分析溶液是通过用某些椭圆函数编写的自旋尖端ANSATZ构建的。我们解决方案中的动力学参数求解了受某些约束的椭圆旋转Calogero-Moser(CM)系统。在我们的构建过程中,我们为这种约束的椭圆旋转CM系统建立了一种新颖的Bäcklund转换。
We present a class of periodic solutions of the non-chiral intermediate Heisenberg ferromagnet (ncIHF) equation, which was recently introduced by the authors together with Langmann as a classical, continuum limit of an Inozemtsev-type spin chain. These exact analytic solutions are constructed via a spin-pole ansatz written in terms of certain elliptic functions. The dynamical parameters in our solutions solve an elliptic spin Calogero-Moser (CM) system subject to certain constraints. In the course of our construction, we establish a novel Bäcklund transformation for this constrained elliptic spin CM system.