论文标题

迈向DDOS检测的可解释的元学习

Towards Explainable Meta-Learning for DDoS Detection

论文作者

Zhou, Qianru, Li, Rongzhen, Xu, Lei, Nallanathan, Arumugam, Yang, Jian, Fu, Anmin

论文摘要

互联网是人类有史以来建立的最复杂的机器,以及如何防御入侵更加复杂。随着新入侵的不断增加,入侵检测任务越来越依赖人工智能。机器学习模型的可解释性和透明度是对AI驱动的入侵检测结果的信任的基础。当前的解释人工智能技术是侵入检测的启发式方法,这既不准确也不足够。本文提出了一种基于人造免疫系统的严格可解释的人工智能驱动的入侵检测方法。介绍了决策树模型的严格解释计算过程的细节。对良性交通流的主要隐性解释是针对网络免疫系统负选择的规则。实验是在现实生活中进行的。

The Internet is the most complex machine humankind has ever built, and how to defense it from intrusions is even more complex. With the ever increasing of new intrusions, intrusion detection task rely on Artificial Intelligence more and more. Interpretability and transparency of the machine learning model is the foundation of trust in AI-driven intrusion detection results. Current interpretation Artificial Intelligence technologies in intrusion detection are heuristic, which is neither accurate nor sufficient. This paper proposed a rigorous interpretable Artificial Intelligence driven intrusion detection approach, based on artificial immune system. Details of rigorous interpretation calculation process for a decision tree model is presented. Prime implicant explanation for benign traffic flow are given in detail as rule for negative selection of the cyber immune system. Experiments are carried out in real-life traffic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源