论文标题
城市地铁流预测的时空动态图形学习学习
Spatio-Temporal Dynamic Graph Relation Learning for Urban Metro Flow Prediction
论文作者
论文摘要
城市地铁流程预测对于地铁运营计划,乘客流量管理和个人旅行计划非常有价值。但是,它面临两个主要挑战。首先,不同的地铁站,例如转移站和非转移站具有独特的交通模式。其次,建模地铁站的复杂时空动态关系是一项挑战。为了应对这些挑战,我们开发了一个时空动态图形学习模型(STDGRL),以预测城市地铁站的流量。首先,我们提出了一个时空节点嵌入表示模块,以捕获不同站点的交通模式。其次,我们采用动态图关系学习模块来学习地铁站之间的动态空间关系,而没有预定义的图形邻接矩阵。最后,我们为长期地铁流程预测提供了基于变压器的长期关系预测模块。广泛的实验是根据北京,上海,重庆和杭州的地铁数据进行的。实验结果表明,我们的方法超过11个基线的城市地铁流量预测的优势。
Urban metro flow prediction is of great value for metro operation scheduling, passenger flow management and personal travel planning. However, it faces two main challenges. First, different metro stations, e.g. transfer stations and non-transfer stations, have unique traffic patterns. Second, it is challenging to model complex spatio-temporal dynamic relation of metro stations. To address these challenges, we develop a spatio-temporal dynamic graph relational learning model (STDGRL) to predict urban metro station flow. First, we propose a spatio-temporal node embedding representation module to capture the traffic patterns of different stations. Second, we employ a dynamic graph relationship learning module to learn dynamic spatial relationships between metro stations without a predefined graph adjacency matrix. Finally, we provide a transformer-based long-term relationship prediction module for long-term metro flow prediction. Extensive experiments are conducted based on metro data in Beijing, Shanghai, Chongqing and Hangzhou. Experimental results show the advantages of our method beyond 11 baselines for urban metro flow prediction.