论文标题

详细恢复图像通过双重样本启动的对比度学习

Detail-recovery Image Deraining via Dual Sample-augmented Contrastive Learning

论文作者

Shen, Yiyang, Wei, Mingqiang, Deng, Sen, Yang, Wenhan, Wang, Yongzhen, Zhang, Xiao-Ping, Wang, Meng, Qin, Jing

论文摘要

多雨图像内容物的复杂性通常会导致尖端的模型导致图像降解,包括残余雨,错误地被驱动的细节和外观扭曲。将这种模型应用于合成数据训练的模型中,这种降解进一步加剧了。我们观察到合成和现实世界中的多雨图像之间的两种类型的域间隙:其中一个存在于雨条模式中;另一个是无雨图像的像素级外观。为了弥合两个域间隙,我们提出了一个半监督的细节恢复图像驱动网络(Sem-DRDNET),并使用双重样本启动的对比度学习。半DRDNET由三个子网络组成:i)为了删除没有残余的雨条,我们提供了基于挤压和激发的雨水残留网络; ii)为鼓励丢失的细节返回,我们构建了一个结构细节上下文集合基于细节的修复网络;据我们所知,这是第一次。 iii)为了建立雨条和干净背景的有效对比度限制,我们利用了新型的双重样本增强对比偏的正则化网络。SEMI-DRDNET在避免鲁棒性和细节准确性方面在合成和现实世界中都可以平稳地在合成和现实世界中的雨水数据上运行。在包括我们既定的Real200在内的四个数据集上的比较显示,在15种最先进的方法中,半Drdnet的明显改进。代码和数据集可在https://github.com/syy-whu/drd-net上找到。

The intricacy of rainy image contents often leads cutting-edge deraining models to image degradation including remnant rain, wrongly-removed details, and distorted appearance. Such degradation is further exacerbated when applying the models trained on synthetic data to real-world rainy images. We observe two types of domain gaps between synthetic and real-world rainy images: one exists in rain streak patterns; the other is the pixel-level appearance of rain-free images. To bridge the two domain gaps, we propose a semi-supervised detail-recovery image deraining network (Semi-DRDNet) with dual sample-augmented contrastive learning. Semi-DRDNet consists of three sub-networks:i) for removing rain streaks without remnants, we present a squeeze-and-excitation based rain residual network; ii) for encouraging the lost details to return, we construct a structure detail context aggregation based detail repair network; to our knowledge, this is the first time; and iii) for building efficient contrastive constraints for both rain streaks and clean backgrounds, we exploit a novel dual sample-augmented contrastive regularization network.Semi-DRDNet operates smoothly on both synthetic and real-world rainy data in terms of deraining robustness and detail accuracy. Comparisons on four datasets including our established Real200 show clear improvements of Semi-DRDNet over fifteen state-of-the-art methods. Code and dataset are available at https://github.com/syy-whu/DRD-Net.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源