论文标题

负载监控时间序列的维度扩展和EMS的转移学习

Dimensionality Expansion of Load Monitoring Time Series and Transfer Learning for EMS

论文作者

Bertalanič, Blaž, Jenko, Jakob, Fortuna, Carolina

论文摘要

能源管理系统(EMS)依靠(非)感知负载监控(N)ILM来监视和管理设备,并帮助居民更加节能,因此更节俭。在相对有限的数据上接受培训和评估,尚未完全理解(n)ILM的最有希望的机器学习解决方案的鲁棒性以及转移潜力。在本文中,我们提出了一种基于时间序列和转移学习的维度扩大的构建EMS负载监视的新方法。我们对5个不同的低频数据集进行了广泛的评估。提出的使用类似视频转换和资源意识深度学习体系结构的特征维度扩展可在数据集中具有29个设备的平均加权F1得分为0.88,并且与最先进的成像方法相比,计算效率更高。研究提出的交叉数据域内转移学习的方法,我们发现1)我们的方法以平均加权F1得分为0.80,同时需要3倍的模型训练时期3倍的时期,与非转移方法相比,与非转移方法相比,2)可以实现0.75的f1分数,只有230个数据示例,以及3)的限制,以及3)的限制,并在230个数据示例中取得了12次的限制。电器。

Energy management systems (EMS) rely on (non)-intrusive load monitoring (N)ILM to monitor and manage appliances and help residents be more energy efficient and thus more frugal. The robustness as well as the transfer potential of the most promising machine learning solutions for (N)ILM is not yet fully understood as they are trained and evaluated on relatively limited data. In this paper, we propose a new approach for load monitoring in building EMS based on dimensionality expansion of time series and transfer learning. We perform an extensive evaluation on 5 different low-frequency datasets. The proposed feature dimensionality expansion using video-like transformation and resource-aware deep learning architecture achieves an average weighted F1 score of 0.88 across the datasets with 29 appliances and is computationally more efficient compared to the state-of-the-art imaging methods. Investigating the proposed method for cross-dataset intra-domain transfer learning, we find that 1) our method performs with an average weighted F1 score of 0.80 while requiring 3-times fewer epochs for model training compared to the non-transfer approach, 2) can achieve an F1 score of 0.75 with only 230 data samples, and 3) our transfer approach outperforms the state-of-the-art in precision drop by up to 12 percentage points for unseen appliances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源