论文标题

基于检索的语义图像合成的空间自适应归一化

Retrieval-based Spatially Adaptive Normalization for Semantic Image Synthesis

论文作者

Shi, Yupeng, Liu, Xiao, Wei, Yuxiang, Wu, Zhongqin, Zuo, Wangmeng

论文摘要

语义图像综合是许多实际应用的一项艰巨的任务。尽管在语义图像合成中取得了显着的进展,并具有空间自适应的归一化,现有方法在粗级指导下(例如语义类别)将特征激活正常化。但是,语义对象的不同部分(例如,汽车的车轮和窗户)在结构和纹理上截然不同,由于缺少细粒度的指导,通常不可避免地会导致模糊的合成结果。在本文中,我们提出了一个新型的归一化模块,称为基于检索的空间自适应归一化(RESAIL),用于将像素水平的细粒度指导引入归一化结构。具体而言,我们首先通过找到与每个测试语义掩码最相似的训练组中的相同语义类别的内容贴片来提出检索范式。然后,提出了resail以使用检索到的斑块来指导相应区域的特征归一化,并可以提供像素水平的细粒指导,从而大大减轻了模糊的合成结果。此外,扭曲的地面真相图像也被用作基于检索的特征标准化指南的替代方案,进一步使模型训练受益并提高了生成的图像的视觉质量。在几个具有挑战性的数据集上进行的实验表明,在定量指标,视觉质量和主观评估方面,我们的恢复对最先进的作品表现出色。源代码和预培训模型将公开可用。

Semantic image synthesis is a challenging task with many practical applications. Albeit remarkable progress has been made in semantic image synthesis with spatially-adaptive normalization and existing methods normalize the feature activations under the coarse-level guidance (e.g., semantic class). However, different parts of a semantic object (e.g., wheel and window of car) are quite different in structures and textures, making blurry synthesis results usually inevitable due to the missing of fine-grained guidance. In this paper, we propose a novel normalization module, termed as REtrieval-based Spatially AdaptIve normaLization (RESAIL), for introducing pixel level fine-grained guidance to the normalization architecture. Specifically, we first present a retrieval paradigm by finding a content patch of the same semantic class from training set with the most similar shape to each test semantic mask. Then, RESAIL is presented to use the retrieved patch for guiding the feature normalization of corresponding region, and can provide pixel level fine-grained guidance, thereby greatly mitigating blurry synthesis results. Moreover, distorted ground-truth images are also utilized as alternatives of retrieval-based guidance for feature normalization, further benefiting model training and improving visual quality of generated images. Experiments on several challenging datasets show that our RESAIL performs favorably against state-of-the-arts in terms of quantitative metrics, visual quality, and subjective evaluation. The source code and pre-trained models will be publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源