论文标题

带有学习形状信息的椎间盘标签,曾经是一种方法

Intervertebral Disc Labeling With Learning Shape Information, A Look Once Approach

论文作者

Azad, Reza, Heidari, Moein, Cohen-Adad, Julien, Adeli, Ehsan, Merhof, Dorit

论文摘要

从医学图像中对椎间盘的准确和自动分割是评估与脊柱相关疾病(例如骨质疏松症,椎骨骨折和椎间盘椎间盘突出症)的关键任务。迄今为止,文献中已经开发了各种方法,这些方法通常依赖于将光盘作为主要步骤。许多队列研究的缺点是,定位算法也产生假阳性检测。在这项研究中,我们旨在通过提出一种新型的基于U-NET的结构来预测一组椎间盘位置的候选者,以减轻此问题。在我们的设计中,我们集成了图像形状信息(图像梯度),以鼓励模型学习丰富而通用的几何信息。该附加信号指导该模型选择性强调上下文表示并抑制较小的歧视特征。在后处理方面,为了进一步降低误报率,我们提出了一个置换不变的“外观一次”模型,该模型加速了候选恢复程序。与以前的研究相比,我们提出的方法不需要以迭代方式执行选择。在脊柱通用的公共多中心数据集上评估了所提出的方法,与以前的工作相比,该方法表现出卓越的性能。我们在https://github.com/rezazad68/intervertebral-lookonce中提供了实现代码

Accurate and automatic segmentation of intervertebral discs from medical images is a critical task for the assessment of spine-related diseases such as osteoporosis, vertebral fractures, and intervertebral disc herniation. To date, various approaches have been developed in the literature which routinely relies on detecting the discs as the primary step. A disadvantage of many cohort studies is that the localization algorithm also yields false-positive detections. In this study, we aim to alleviate this problem by proposing a novel U-Net-based structure to predict a set of candidates for intervertebral disc locations. In our design, we integrate the image shape information (image gradients) to encourage the model to learn rich and generic geometrical information. This additional signal guides the model to selectively emphasize the contextual representation and suppress the less discriminative features. On the post-processing side, to further decrease the false positive rate, we propose a permutation invariant 'look once' model, which accelerates the candidate recovery procedure. In comparison with previous studies, our proposed approach does not need to perform the selection in an iterative fashion. The proposed method was evaluated on the spine generic public multi-center dataset and demonstrated superior performance compared to previous work. We have provided the implementation code in https://github.com/rezazad68/intervertebral-lookonce

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源