论文标题
在秩序的同构中,dirichlet形式交织的半群
On order isomorphisms intertwining semigroups for Dirichlet forms
论文作者
论文摘要
本文致力于表征所谓的订单同构,以缠绕两种dirichlet形式的$ l^2 $ - 序列。我们首先表明,每一个统一的同构相互交织的半群是$ h $转化和准塑形的组成。此外,在Dirichlet形式的绝对连续性条件下,每个(不一定是统一的)同构相互交织的半群是$ h $转化,准塑性和通过一定步骤函数的乘法的组成。
This paper is devoted to characterizing the so-called order isomorphisms intertwining the $L^2$-semigroups of two Dirichlet forms. We first show that every unitary order isomorphism intertwining semigroups is the composition of $h$-transformation and quasi-homeomorphism. In addition, under the absolute continuity condition on Dirichlet forms, every (not necessarily unitary) order isomorphism intertwining semigroups is the composition of $h$-transformation, quasi-homeomorphism, and multiplication by a certain step function.