论文标题

改进的逐一基础方法和相对同源的熵不平等

Improved proof-by-contraction method and relative homologous entropy inequalities

论文作者

Li, Nan, Dong, Chuan-Shi, Du, Dong-Hui, Shu, Fu-Wen

论文摘要

著名的全息纠缠熵引发了对量子信息理论与量子重力之间的联系的研究。一个重要的成就是,我们对量子状态有了更多的了解。它使我们能够诊断给定的量子状态是否是全息状态,该状态的散装双重符合半经典的几何描述。这种诊断的有效工具是全息熵锥(HEC),这是该理论允许的全息熵不等式的熵空间。为了修复HEC并证明给定的全息熵不平等,已经开发了逐一收缩技术。此方法在很大程度上取决于收缩地图$ f $,这是很难构造的,尤其是对于更多区域($ n \ geq 4 $)案例。在这项工作中,我们制定了一条一般有效的规则,以排除大多数情况,以便以相对简单的方式获得$ f $。此外,我们将整个框架扩展到相对同源熵,这是适合表征混合状态纠缠的全息纠缠熵的概括。

The celebrated holographic entanglement entropy triggered investigations on the connections between quantum information theory and quantum gravity. An important achievement is that we have gained more insights into the quantum states. It allows us to diagnose whether a given quantum state is a holographic state, a state whose bulk dual admits semiclassical geometrical description. The effective tool of this kind of diagnosis is holographic entropy cone (HEC), an entropy space bounded by holographic entropy inequalities allowed by the theory. To fix the HEC and to prove a given holographic entropy inequality, a proof-by-contraction technique has been developed. This method heavily depends on a contraction map $f$, which is very difficult to construct especially for more-region ($n\geq 4$) cases. In this work, we develop a general and effective rule to rule out most of the cases such that $f$ can be obtained in a relatively simple way. In addition, we extend the whole framework to relative homologous entropy, a generalization of holographic entanglement entropy that is suitable for characterizing the entanglement of mixed states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源