论文标题
sub-finsler Heisenberg $ \ mathbb {h}^1 $中的面积最小程度的水平图具有低指数的水平图
Area-minimizing horizontal graphs with low-regularity in the sub-Finsler Heisenberg group $\mathbb{H}^1$
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In the Heisenberg group $\mathbb{H}^1$, equipped with a left-invariant and not necessarily symmetric norm in the horizontal distribution, we provide examples of entire area-minimizing horizontal graphs which are locally Lipschitz in Euclidean sense. A large number of them fail to have further regularity properties. The examples are obtained by prescribing as singular set a horizontal line or a finite union of horizontal half-lines extending from a given point. We also provide examples of families of area-minimizing cones.