论文标题
机器人团队的分布式强化学习:评论
Distributed Reinforcement Learning for Robot Teams: A Review
论文作者
论文摘要
审查的目的:最新的感应,驱动和计算进展为由数百/数千个机器人组成的多机器人系统打开了大门,并有希望地适用于自动化制造,救灾,收获,最后一英里的交付,港口/机场运营,港口/机场运营或搜索和搜救。社区拥有无模型的多代理增强学习(MARL),以设计高效,可扩展的多机器人系统(MRS)。这篇综述旨在对分布式MAL中的最先进的多机手合作进行分析。 最新发现:分散的太太面临着基本挑战,例如非平稳性和部分可观察性。在“集中培训,分散执行”范式的基础上,最近的MARL方法包括独立学习,集中批评家,价值分解和交流学习方法。通过AI基准和基本现实世界机器人功能(例如多机器人运动/路径计划)来证明合作行为。 摘要:这项调查报告了针对多机手合作和现有方法类别的无模型MAL的挑战。我们介绍了基准和机器人应用,以及有关当前开放研究途径的讨论。
Purpose of review: Recent advances in sensing, actuation, and computation have opened the door to multi-robot systems consisting of hundreds/thousands of robots, with promising applications to automated manufacturing, disaster relief, harvesting, last-mile delivery, port/airport operations, or search and rescue. The community has leveraged model-free multi-agent reinforcement learning (MARL) to devise efficient, scalable controllers for multi-robot systems (MRS). This review aims to provide an analysis of the state-of-the-art in distributed MARL for multi-robot cooperation. Recent findings: Decentralized MRS face fundamental challenges, such as non-stationarity and partial observability. Building upon the "centralized training, decentralized execution" paradigm, recent MARL approaches include independent learning, centralized critic, value decomposition, and communication learning approaches. Cooperative behaviors are demonstrated through AI benchmarks and fundamental real-world robotic capabilities such as multi-robot motion/path planning. Summary: This survey reports the challenges surrounding decentralized model-free MARL for multi-robot cooperation and existing classes of approaches. We present benchmarks and robotic applications along with a discussion on current open avenues for research.