论文标题
Picaso的多云和无云的热相曲线:对黄蜂的应用
Cloudy and Cloud-free Thermal Phase Curves with PICASO: Applications to WASP-43b
论文作者
论文摘要
我们通过开发一条新的管道,该新管道从三维(3D)模型中计算出相相位分辨的热发射(热相曲线),介绍了picaso中的新功能,这是外部球星和棕色大气的最先进的辐射转移模型。因为Picaso与开源云代码Virga耦合在一起,所以我们能够产生具有不同沉积效率($ f_ {sed} $)和云冷凝水物种的云层曲线。我们介绍了该新算法的第一个应用到热木星WASP-43B。先前关于WASP-43B的热发射的研究。发现无云模型与日常热排放之间有很好的一致性,但是对夜间通量的高估,已建议将云作为可能的解释。我们使用Kataria等人的无云3D一般循环模型的温度和垂直风结构。并假设云形成并影响光谱,并使用picaso进行后处理。我们将模型与Kataria等人的结果进行了比较,包括史蒂文森等人的WASP-43B观察到Hubble空间宽场相机3(WFC3)。此外,我们在3.6和4.5 $μm$的情况下计算Spitzer的相位曲线,并将其与Stevenson等人的观测值进行比较。即使Picaso使用粗空间网格,我们也能够密切恢复无云的结果。我们发现,多云的相曲线与WFC3和Spitzer夜边数据提供了更好的一致性,同时仍然与Dayseade发射非常匹配。这项工作为社区提供了一种方便,用户友好的工具,可以使用3D模型来解释系外行星气氛的相位观测。
We present new functionality within PICASO, a state-of-the-art radiative transfer model for exoplanet and brown dwarf atmospheres, by developing a new pipeline that computes phase-resolved thermal emission (thermal phase curves) from three-dimensional (3D) models. Because PICASO is coupled to Virga, an open-source cloud code, we are able to produce cloudy phase curves with different sedimentation efficiencies ($f_{sed}$) and cloud condensate species. We present the first application of this new algorithm to hot Jupiter WASP-43b. Previous studies of the thermal emission of WASP-43b from Kataria et al. found good agreement between cloud-free models and dayside thermal emission, but an overestimation of the nightside flux, for which clouds have been suggested as a possible explanation. We use the temperature and vertical wind structure from the cloud-free 3D general circulation models of Kataria et al. and post-process it using PICASO, assuming that clouds form and affect the spectra. We compare our models to results from Kataria et al., including Hubble Space Telescope Wide-Field Camera 3 (WFC3) observations of WASP-43b from Stevenson et al. In addition, we compute phase curves for Spitzer at 3.6 and 4.5 $μm$ and compare them to observations from Stevenson et al. We are able to closely recover the cloud-free results, even though PICASO utilizes a coarse spatial grid. We find that cloudy phase curves provide much better agreement with the WFC3 and Spitzer nightside data, while still closely matching the dayside emission. This work provides the community with a convenient, user-friendly tool to interpret phase-resolved observations of exoplanet atmospheres using 3D models.