论文标题

强大的可接受性,一种可访问的算法方法(证明)

Strong Admissibility, a Tractable Algorithmic Approach (proofs)

论文作者

Caminada, Martin, Harikrishnan, Sri

论文摘要

就像可接受性一样,是基本的首选语义的关键概念,强大的可接受性是基础基础语义的关键概念,因为强烈可接受的集合的成员足以显示扎根扩展的成员。因此,强烈的可接受的集合和标记可以用作对接地扩展的成员资格的解释,例如在某些扎根语义的证明程序中所做的。在当前的论文中,我们提出了两种多项式算法,用于构建相对较小的强允许的标记,并与相关的最低最大数量构建特定参数。这些标记可以用作相对较小的解释,用于该论点的扎根扩展。尽管不能保证我们的算法对该论点产生绝对最小的可允许的标签(就像做的那样,这意味着指数的复杂性),但我们最佳性能的算法产生的结果只会略大。此外,该算法的运行时间比现有方法的计算特定参数的绝对最小可接受的标记的现有方法小的数量级。因此,我们认为,在目的的目的是以时间效率的方式构建最小或近乎最小的可接受的标签,我们的算法可能具有实际价值。

Much like admissibility is the key concept underlying preferred semantics, strong admissibility is the key concept underlying grounded semantics, as membership of a strongly admissible set is sufficient to show membership of the grounded extension. As such, strongly admissible sets and labellings can be used as an explanation of membership of the grounded extension, as is for instance done in some of the proof procedures for grounded semantics. In the current paper, we present two polynomial algorithms for constructing relatively small strongly admissible labellings, with associated min-max numberings, for a particular argument. These labellings can be used as relatively small explanations for the argument's membership of the grounded extension. Although our algorithms are not guaranteed to yield an absolute minimal strongly admissible labelling for the argument (as doing do would have implied an exponential complexity), our best performing algorithm yields results that are only marginally bigger. Moreover, the runtime of this algorithm is an order of magnitude smaller than that of the existing approach for computing an absolute minimal strongly admissible labelling for a particular argument. As such, we believe that our algorithms can be of practical value in situations where the aim is to construct a minimal or near-minimal strongly admissible labelling in a time-efficient way.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源