论文标题
马尔可道和汤普森集团$ f $
Markovianity and the Thompson Group $F$
论文作者
论文摘要
我们表明,汤普森集团$ f $在非交通概率空间的自动形态学中的表示形式产生了大量的双边静止非交通式马尔可夫流程。作为部分匡威,双边固定的马尔可夫在张量扩张形式的产量表示为$ f $。作为一个应用程序,并基于Kümmerer的构建,我们将$ f $的代表与经典概率相关联。
We show that representations of the Thompson group $F$ in the automorphisms of a noncommutative probability space yield a large class of bilateral stationary noncommutative Markov processes. As a partial converse, bilateral stationary Markov processes in tensor dilation form yield representations of $F$. As an application, and building on a result of Kümmerer, we canonically associate a representation of $F$ to a bilateral stationary Markov process in classical probability.