论文标题

通过功能注入的自我手术神经网络的全球心电图分类

Global ECG Classification by Self-Operational Neural Networks with Feature Injection

论文作者

Zahid, Muhammad Uzair, Kiranyaz, Serkan, Gabbouj, Moncef

论文摘要

目的:对心电图(ECG)信号的心律失常检测的全局(患者间)ECG分类是人和机器的一项艰巨任务。主要原因是患者正常和心律不齐的ECG模式的显着变化。因此,由于可穿戴ECG传感器的出现,以最高的精度自动化此过程是非常可取的。但是,即使最近提出了许多深度学习方法,全球和特定于患者的心电图分类表现的表现仍然存在显着差距。这项研究提出了一种新的方法来缩小这一差距,并提出了一种用浅而紧凑的1D自组织的操作神经网络(自我强调)的实时解决方案。方法:在这项研究中,我们通过利用心脏周期中的形态学和时机信息,提出了一种使用紧凑型1D自我支撑的新型方法进行患者跨ECG分类的方法。我们使用1D自我层从ECG数据中自动学习形态表示,从而使我们能够捕获R峰周围的ECG波形的形状。我们根据RR间隔进一步注入时间特征,以进行定时表征。因此,分类层可以从时间和学到的特征中受益于最终的心律不齐分类。结果:使用MIT-BIH心律失常基准数据库,提出的方法实现了有史以来最高的分类性能,即99.21%的精度,99.10%的召回率和99.15%的F1得分(n)段; 82.19%的精度,82.50%的召回率和82.34%的室内异位击败(SVEB)的F1得分;最后,心室 - 切割节拍(VEB)的精度为94.41%,召回96.10%的召回和95.2%的F1得分。

Objective: Global (inter-patient) ECG classification for arrhythmia detection over Electrocardiogram (ECG) signal is a challenging task for both humans and machines. The main reason is the significant variations of both normal and arrhythmic ECG patterns among patients. Automating this process with utmost accuracy is, therefore, highly desirable due to the advent of wearable ECG sensors. However, even with numerous deep learning approaches proposed recently, there is still a notable gap in the performance of global and patient-specific ECG classification performances. This study proposes a novel approach to narrow this gap and propose a real-time solution with shallow and compact 1D Self-Organized Operational Neural Networks (Self-ONNs). Methods: In this study, we propose a novel approach for inter-patient ECG classification using a compact 1D Self-ONN by exploiting morphological and timing information in heart cycles. We used 1D Self-ONN layers to automatically learn morphological representations from ECG data, enabling us to capture the shape of the ECG waveform around the R peaks. We further inject temporal features based on RR interval for timing characterization. The classification layers can thus benefit from both temporal and learned features for the final arrhythmia classification. Results: Using the MIT-BIH arrhythmia benchmark database, the proposed method achieves the highest classification performance ever achieved, i.e., 99.21% precision, 99.10% recall, and 99.15% F1-score for normal (N) segments; 82.19% precision, 82.50% recall, and 82.34% F1-score for the supra-ventricular ectopic beat (SVEBs); and finally, 94.41% precision, 96.10% recall, and 95.2% F1-score for the ventricular-ectopic beats (VEBs).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源