论文标题
在最大加权纳什福利方面的二元估值
On Maximum Weighted Nash Welfare for Binary Valuations
论文作者
论文摘要
我们认为,将不可分割的商品分配给具有代表其权利权重的代理商的问题。在这种情况下,自然规则是最大加权纳什福利(MWNW)规则,该规则选择了最大化代理商实用程序加权产品的分配。我们表明,当代理具有二元估值时,MWNW的特定版本是资源和人口 - 单酮,可以满足群体 - 策略性的范围,并且可以在多项式时间内实现。
We consider the problem of fairly allocating indivisible goods to agents with weights representing their entitlements. A natural rule in this setting is the maximum weighted Nash welfare (MWNW) rule, which selects an allocation maximizing the weighted product of the agents' utilities. We show that when agents have binary valuations, a specific version of MWNW is resource- and population-monotone, satisfies group-strategyproofness, and can be implemented in polynomial time.