论文标题
在两种频率哈伯德模型中的不良金属和负压过渡
Bad metal and negative compressibility transitions in a two-band Hubbard model
论文作者
论文摘要
我们分析了两个波段哈伯德模型的顺磁状态,其中有限的hund的耦合接近整数填充,在两个空间维度中$ n = 2 $。以前,在该整数填充的附近,在$ n = 2 $的情况下建立了Mott Metal-Metal-Metultrator转变。共存区域在电荷不稳定性持续的关键点结束。在这里,我们调查了从奴隶玻色子设置中接近$ n = 2 $的扩展填充范围的负电子可压缩性状态的过渡。我们分析了(费米子)准粒子和(骨)多颗粒不连贯的背景的单独贡献,并发现总压缩性取决于准粒子激发与集体磁场之间的微妙相互作用。为奴隶玻色子实施Blume-Emery-Griffiths模型方法,该方法通过类似伪的伪鞋来模仿骨骼场,我们建议这些田地与费米子自由度之间有反馈机制。我们认为,对于这种密切相关的平面的异质结构可以维持负的压缩性,并导致这些结构的大电容。这些电容的强密度依赖性使它们通过小型电子密度变化调整它们。此外,通过电阻性从莫特(Mott)通过短的电脉冲切换到金属状态,可以实现相当不同的电容之间的过渡。
We analyze the paramagnetic state of a two-band Hubbard model with finite Hund's coupling close to integer filling at $n=2$ in two spacial dimensions. Previously, a Mott metal-insulator transition was established at $n=2$ with a coexistence region of a metallic and a bad metal state in the vicinity of that integer filling. The coexistence region ends at a critical point beyond which a charge instability persists. Here we investigate the transition into negative electronic compressibility states for an extended filling range close to $n=2$ within a slave boson setup. We analyze the separate contributions from the (fermionic) quasiparticles and the (bosonic) multiparticle incoherent background and find that the total compressibility depends on a subtle interplay between the quasiparticle excitations and collective fields. Implementing a Blume-Emery-Griffiths model approach for the slave bosons, which mimics the bosonic fields by Ising-like pseudospins, we suggest a feedback mechanism between these fields and the fermionic degrees of freedom. We argue that the negative compressibility can be sustained for heterostructures of such strongly correlated planes and results in a large capacitance of these structures. The strong density dependence of these capacitances allows to tune them through small electronic density variations. Moreover, by resistive switching from a Mott insulating state to a metallic state through short electric pulses, transitions between fairly different capacitances are within reach.