论文标题

铁鹅卵石的成核和生长解释了类似于汞的铁星的形成

Nucleation and growth of iron pebbles explains the formation of iron-rich planets akin to Mercury

论文作者

Johansen, Anders, Dorn, Caroline

论文摘要

形成富含铁的汞的途径仍然是神秘的。汞的核心占行星质量的70%,这意味着铁相对于硅酸盐的显着富集,而其地幔在氧化铁中大量耗尽。传统上,高核质量分数被归因于蒸发的硅酸盐损失,例如在巨大的影响下,但是水星地幔中挥发性元素的高丰度与在形成过程中达到1000 k以上的温度不一致。在这里,我们从太阳能组合物的气体中探索了固体颗粒的成核,该气体在原星盘的热内区域冷却。铁的高表面张力会导致铁颗粒在非常高的过饱和度下同性化(即不在更难治的底物上)。低成核速率导致大型铁卵石的沉积生长在稀疏的成核铁纳米粒子上。以无铁的MGSIO $ _3 $成核的形式在类似的温度下硅酸盐,但由于核定颗粒的数量要高得多,因此获得了较小的尺寸。这导致大型铁颗粒与硅酸盐颗粒的化学分离,而硅酸盐颗粒的数量较低十倍。我们建议这样的条件导致流媒体不稳定性形成富铁的行星。从这种角度来看,汞是由富含铁的行星具有高度减少硅酸盐材料的富含铁的行星形成的。我们的结果表明,不需要绕太阳和其他恒星绕着横扫地幔撞击的富含铁的行星。取而代之的是,它们的形成可能是原球盘温度波动的直接结果,以及通过随之而来的成核过程将不同晶体物种的化学分离。

The pathway to forming the iron-rich planet Mercury remains mysterious. Mercury's core makes up 70% of the planetary mass, which implies a significant enrichment of iron relative to silicates, while its mantle is strongly depleted in oxidized iron. The high core mass fraction is traditionally ascribed to evaporative loss of silicates, e.g. following a giant impact, but the high abundance of moderately volatile elements in the mantle of Mercury is inconsistent with reaching temperatures much above 1,000 K during its formation. Here we explore the nucleation of solid particles from a gas of solar composition that cools down in the hot inner regions of the protoplanetary disc. The high surface tension of iron causes iron particles to nucleate homogeneously (i.e., not on a more refractory substrate) under very high supersaturation. The low nucleation rates lead to depositional growth of large iron pebbles on a sparse population of nucleated iron nano-particles. Silicates in the form of iron-free MgSiO$_3$ nucleate at similar temperatures but obtain smaller sizes due to the much higher number of nucleated particles. This results in a chemical separation of large iron particles from silicate particles with ten times lower Stokes numbers. We propose that such conditions lead to the formation of iron-rich planetesimals by the streaming instability. In this view, Mercury formed by accretion of iron-rich planetesimals with a sub-solar abundance of highly reduced silicate material. Our results imply that the iron-rich planets known to orbit the Sun and other stars are not required to have experienced mantle-stripping impacts. Instead their formation could be a direct consequence of temperature fluctuations in protoplanetary discs and chemical separation of distinct crystal species through the ensuing nucleation process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源