论文标题
低维度(n = p+q <3)Clifford代数的多生动物的指数和对数
Exponential and logarithm of multivector in low dimensional (n=p+q<3) Clifford algebras
论文作者
论文摘要
当n = p+q = 1(复杂和双曲线数)和n = 2(汉密尔顿,分裂和contectorine Quaternions)时,在实际的Clifford几何代数CL(P,Q)中介绍了多生育指数和对数的封闭形式表达式。从Cl(0,1)和Cl(1,0)代数开始,其中基矢量的平方为-1或+1,我们对2D Quaternionic代数,Cl(0,2),Cl(1,1)和Cl(2,0)具有广义的指数和对数公式。发现存在2D对数的多生同系数空间中的扇区。它们与多骑人的平方根有关。
Closed form expressions for a multivector exponential and logarithm are presented in real Clifford geometric algebras Cl(p,q)when n=p+q=1 (complex and hyperbolic numbers) and n=2 (Hamilton, split and conectorine quaternions). Starting from Cl(0,1) and Cl(1,0) algebras wherein square of a basis vector is either -1 or +1, we have generalized exponential and logarithm formulas to 2D quaternionic algebras, Cl(0,2), Cl(1,1), and Cl(2,0). The sectors in the multivector coefficient space where 2D logarithm exists are found. They are related with a square root of the multivector.