论文标题
零射击跨语性对话语义角色标签
Zero-shot Cross-lingual Conversational Semantic Role Labeling
论文作者
论文摘要
尽管对话语义角色标签(CSRL)表明其对中国对话任务的有用性,但由于缺乏解析器培训的多语言CSRL注释,因此在非中语言中仍未探索它。为了避免对基于翻译的方法的昂贵数据收集和错误传播,我们提出了一种简单但有效的方法来执行零射击跨语义CSRL。我们的模型隐含地学习了语言敏锐的,对话结构感知和语义上丰富的表示,并具有层次编码器和精心设计的预训练预训练目标。实验结果表明,我们的模型在两个新收集的英文CSRL测试集上的大幅度优于所有基准。更重要的是,我们通过将CSRL信息纳入基于下游对话的模型中,确认了CSRL对英语中的问题重写诸如英语中的问题重写任务,以及英语,德语和日语中的多转化对话响应响应生成任务。我们认为,这一发现很重要,并且将促进遇到省略号和图表问题的非中国对话任务的研究。
While conversational semantic role labeling (CSRL) has shown its usefulness on Chinese conversational tasks, it is still under-explored in non-Chinese languages due to the lack of multilingual CSRL annotations for the parser training. To avoid expensive data collection and error-propagation of translation-based methods, we present a simple but effective approach to perform zero-shot cross-lingual CSRL. Our model implicitly learns language-agnostic, conversational structure-aware and semantically rich representations with the hierarchical encoders and elaborately designed pre-training objectives. Experimental results show that our model outperforms all baselines by large margins on two newly collected English CSRL test sets. More importantly, we confirm the usefulness of CSRL to non-Chinese conversational tasks such as the question-in-context rewriting task in English and the multi-turn dialogue response generation tasks in English, German and Japanese by incorporating the CSRL information into the downstream conversation-based models. We believe this finding is significant and will facilitate the research of non-Chinese dialogue tasks which suffer the problems of ellipsis and anaphora.