论文标题

T- HOP:图形卷积网络中路径的张量表示

T- Hop: Tensor representation of paths in graph convolutional networks

论文作者

Ibraheem, Abdulrahman

论文摘要

我们描述了一种将图形信息编码为3D张量的方法。我们显示了引入的路径表示方案与动力邻接矩阵之间的联系。为了减轻与3-D张量合作的大量计算需求,我们建议在张量的深度轴上施加尺寸降低。然后,我们通过将其注入已建立的图形卷积网络框架(如Mixhop)中来描述我们还原的3-D矩阵可以将其分解为合理的图形卷积层。

We describe a method for encoding path information in graphs into a 3-d tensor. We show a connection between the introduced path representation scheme and powered adjacency matrices. To alleviate the heavy computational demands of working with the 3-d tensor, we propose to apply dimensionality reduction on the depth axis of the tensor. We then describe our the reduced 3-d matrix can be parlayed into a plausible graph convolutional layer, by infusing it into an established graph convolutional network framework such as MixHop.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源