论文标题
随机相似性森林
Random Similarity Forests
论文作者
论文摘要
收集有关人类及其周围环境的大量数据推动了各个领域的新机器学习应用程序。因此,越来越多地使用数值数据,还使用复杂的数据对象对分类器进行培训。例如,多媒体分析试图将数值描述与分布,时间序列数据,离散序列和图相结合。从不同域中的数据集成需要省略某些数据,为不同格式创建单独的模型,或者简化某些数据以遵守共享规模和格式,所有这些都可以阻止预测性能。在本文中,我们提出了一种分类方法,能够处理具有任意数据类型功能的数据集,同时保留每个功能的特征。所提出的称为随机相似性森林的算法使用多种域特异性距离测量方法将随机森林的预测性能与相似性森林的灵活性相结合。我们表明,随机相似性森林与数值数据上的随机森林相提并论,并在复杂或混合数据域的数据集上胜过它们。我们的结果强调了随机相似性森林对嘈杂的多源数据集的适用性,这些数据集在高影响力的生活科学项目中变得无处不在。
The wealth of data being gathered about humans and their surroundings drives new machine learning applications in various fields. Consequently, more and more often, classifiers are trained using not only numerical data but also complex data objects. For example, multi-omics analyses attempt to combine numerical descriptions with distributions, time series data, discrete sequences, and graphs. Such integration of data from different domains requires either omitting some of the data, creating separate models for different formats, or simplifying some of the data to adhere to a shared scale and format, all of which can hinder predictive performance. In this paper, we propose a classification method capable of handling datasets with features of arbitrary data types while retaining each feature's characteristic. The proposed algorithm, called Random Similarity Forest, uses multiple domain-specific distance measures to combine the predictive performance of Random Forests with the flexibility of Similarity Forests. We show that Random Similarity Forests are on par with Random Forests on numerical data and outperform them on datasets from complex or mixed data domains. Our results highlight the applicability of Random Similarity Forests to noisy, multi-source datasets that are becoming ubiquitous in high-impact life science projects.