论文标题
汉密尔顿在普遍的准二面群中
Hamiltonicity in generalized quasi-dihedral groups
论文作者
论文摘要
维特·莫里斯(Witte Morris)在[21]中表明,每个有限(广义)二面体组的Cayley图都有汉密尔顿路径。无限二面体组定义为具有合并$ \ MATHBB Z_2 \ AST \ MATHBB Z_2 $的免费产品。我们表明,无限二面体组的每个连接的Cayley图既有Hamiltonian Double Ray,并且将此结果扩展到所有两端的广义准二二个群。
Witte Morris showed in [21] that every connected Cayley graph of a finite (generalized) dihedral group has a Hamiltonian path. The infinite dihedral group is defined as the free product with amalgamation $\mathbb Z_2 \ast \mathbb Z_2$. We show that every connected Cayley graph of the infinite dihedral group has both a Hamiltonian double ray, and extend this result to all two-ended generalized quasi-dihedral groups.