论文标题

单车图的边缘理想的符号缺陷

Symbolic defects of edge ideals of unicyclic graphs

论文作者

Mandal, Mousumi, Pradhan, Dipak Kumar

论文摘要

我们介绍了图中诱导子图的最小边缘盖的概念。令$ g $为具有唯一奇数的独立图形,而$ i = i(g)$是其优势。我们使用图形中诱导子图的最小边缘盖的概念来计算$ i $的所有符号缺陷的确切值。我们描述了一种方法,可以找到与Edge Idend $ i $的符号缺陷相关的准多项式。当任何固定的$ s $的最大理想能力消灭了$ i^{(s)}/i^s $时,我们将Unicclic图的类别分类。同样对于那些图表,我们计算模块的Hilbert函数$ i^{(s)}/i^s $用于所有$s。$。

We introduce the concept of minimum edge cover for an induced subgraph in a graph. Let $G$ be a unicyclic graph with a unique odd cycle and $I=I(G)$ be its edge ideal. We compute the exact values of all symbolic defects of $I$ using the concept of minimum edge cover for an induced subgraph in a graph. We describe one method to find the quasi-polynomial associated with the symbolic defects of edge ideal $I$. We classify the class of unicyclic graphs when some power of maximal ideal annihilates $ I^{(s)}/I^s $ for any fixed $ s $. Also for those class of graphs, we compute the Hilbert function of the module $I^{(s)}/I^s$ for all $s.$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源