论文标题
带有双面相变的真实分子的Janus van der waals方程
Janus van der Waals equations for real molecules with two-sided phase transitions
论文作者
论文摘要
我们获得了广义范德华方程的家族,其特征在于偶数$ n = 2,4,6 $和连续的免费参数,这对于关键的可压缩因子来说是可调的。每个方程都有两个相邻的临界点,这些点具有一个常见的临界温度$ t_ {c} $,并任意关闭两个临界密度。关键相变自然是双方的:关键指数为$α_ {\ scriptScriptStryle {p}} =γ_ {\ scriptScriptScriptStryle {p}} = \ frac {2}美元$α_ {\ ScriptScriptStryle {p}} =γ_ {\ scriptScriptStriptyle {p}} = \ frac {n} {n+1} $,$β_ {\ scriptsScriptsScriptsScriptsScriptScriptsScriptScriptScriptsScriptScriptScriptScriptScriptScriptScriptScriptScriptScriptScriptScriptsscript {p}} =Δ $ t <t_ {c} $。与原始的范德华方程相反,我们的新颖方程都始终减少到低密度极限的经典理想气体定律。我们针对11个主要分子的NIST数据测试我们的公式,并且比原始的范德华方程更好地显示了协议,不仅接近临界点,而且还接近低密度区域。
We obtain families of generalised van der Waals equations characterised by an even number $n=2,4,6$ and a continuous free parameter which is tunable for a critical compressibility factor. Each equation features two adjacent critical points which have a common critical temperature $T_{c}$ and arbitrarily close two critical densities. The critical phase transitions are naturally two-sided: the critical exponents are $α_{\scriptscriptstyle{P}}=γ_{\scriptscriptstyle{P}}=\frac{2}{3}$, $β_{\scriptscriptstyle{P}}=δ^{-1}=\frac{1}{3}$ for $T>T_{c}$ and $α_{\scriptscriptstyle{P}}=γ_{\scriptscriptstyle{P}}=\frac{n}{n+1}$, $β_{\scriptscriptstyle{P}}=δ^{-1}=\frac{1}{n+1}$ for $T<T_{c}$. In contrast with the original van der Waals equation, our novel equations all reduce consistently to the classical ideal gas law in low density limit. We test our formulas against NIST data for eleven major molecules and show agreements better than the original van der Waals equation, not only near to the critical points but also in low density regions.