论文标题

dair-v2x:用于车辆基础结构合作3D对象检测的大型数据集

DAIR-V2X: A Large-Scale Dataset for Vehicle-Infrastructure Cooperative 3D Object Detection

论文作者

Yu, Haibao, Luo, Yizhen, Shu, Mao, Huo, Yiyi, Yang, Zebang, Shi, Yifeng, Guo, Zhenglong, Li, Hanyu, Hu, Xing, Yuan, Jirui, Nie, Zaiqing

论文摘要

自主驾驶面临着巨大的安全挑战,因为缺乏全球视野和远程感知能力的局限性。人们普遍认为,要实现5级自主权需要车辆基础设施合作。但是,从可用的实际场景中,计算机视觉研究人员可以解决与车辆基础设施合作有关的问题,仍然没有数据集。为了加速用于车辆基础设施合作自动驾驶(VICAD)的计算机视觉研究和创新,我们发布了DAIR-V2X数据集,该数据集是Vicad的真实方案中的第一个大型,多模式的多模式,多模式的数据集。 DAIR-V2X包含71254个LIDAR帧和71254个相机帧,所有框架都是从带有3D注释的真实场景中捕获的。引入了车辆基础结构合作3D对象检测问题(VIC3D),以使用车辆和基础架构的感觉输入来协作定位和识别3D对象的问题。除了解决传统的3D对象检测问题外,VIC3D的解决方案还需要考虑车辆和基础设施传感器之间的时间异步问题以及它们之间的数据传输成本。此外,我们提出了时间补偿后期融合(TCLF),这是基于dair-v2x的基准的VIC3D任务的晚期融合框架。在https://thudair.baai.ac.cn/index和https://github.com/air-thu/dair-v2x上查找数据,代码和更多最新信息。

Autonomous driving faces great safety challenges for a lack of global perspective and the limitation of long-range perception capabilities. It has been widely agreed that vehicle-infrastructure cooperation is required to achieve Level 5 autonomy. However, there is still NO dataset from real scenarios available for computer vision researchers to work on vehicle-infrastructure cooperation-related problems. To accelerate computer vision research and innovation for Vehicle-Infrastructure Cooperative Autonomous Driving (VICAD), we release DAIR-V2X Dataset, which is the first large-scale, multi-modality, multi-view dataset from real scenarios for VICAD. DAIR-V2X comprises 71254 LiDAR frames and 71254 Camera frames, and all frames are captured from real scenes with 3D annotations. The Vehicle-Infrastructure Cooperative 3D Object Detection problem (VIC3D) is introduced, formulating the problem of collaboratively locating and identifying 3D objects using sensory inputs from both vehicle and infrastructure. In addition to solving traditional 3D object detection problems, the solution of VIC3D needs to consider the temporal asynchrony problem between vehicle and infrastructure sensors and the data transmission cost between them. Furthermore, we propose Time Compensation Late Fusion (TCLF), a late fusion framework for the VIC3D task as a benchmark based on DAIR-V2X. Find data, code, and more up-to-date information at https://thudair.baai.ac.cn/index and https://github.com/AIR-THU/DAIR-V2X.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源