论文标题
使用基于向量的MSE估计方法的投资组合优化
Portfolio Optimization Using a Consistent Vector-Based MSE Estimation Approach
论文作者
论文摘要
本文关注的是优化在高维环境中的全球最小值投资组合(GMVP)的权重,在高维环境中,观察和人口维度都以有界比率增长。优化GMVP权重的高度影响了数据协方差矩阵估计。在高维设置中,众所周知,样品协方差矩阵不是对真实协方差矩阵的适当估计器,因为当观察值少于数据维度时,它并不可逆。即使有更多的观察,样品协方差矩阵也可能没有很好的条件。本文确定了基于正则协方差矩阵估计器的GMVP权重,以克服上述困难。与其他方法不同,正规化参数的正确选择是通过最大程度地减少噪声向量估算值的均值误差来实现的,该噪声向量估算了数据平均值估计中的不确定性。使用随机 - 矩阵理论工具,我们得出了可实现的于点错误的一致估计量,该错误使我们能够使用简单的行搜索找到最佳的正则化参数。仿真结果证明了当数据维数大于数据样本数量或相同顺序时所提出的方法的有效性。
This paper is concerned with optimizing the global minimum-variance portfolio's (GMVP) weights in high-dimensional settings where both observation and population dimensions grow at a bounded ratio. Optimizing the GMVP weights is highly influenced by the data covariance matrix estimation. In a high-dimensional setting, it is well known that the sample covariance matrix is not a proper estimator of the true covariance matrix since it is not invertible when we have fewer observations than the data dimension. Even with more observations, the sample covariance matrix may not be well-conditioned. This paper determines the GMVP weights based on a regularized covariance matrix estimator to overcome the aforementioned difficulties. Unlike other methods, the proper selection of the regularization parameter is achieved by minimizing the mean-squared error of an estimate of the noise vector that accounts for the uncertainty in the data mean estimation. Using random-matrix-theory tools, we derive a consistent estimator of the achievable mean-squared error that allows us to find the optimal regularization parameter using a simple line search. Simulation results demonstrate the effectiveness of the proposed method when the data dimension is larger than the number of data samples or of the same order.