论文标题
ASDEX的全球旋能模拟使用Gene-Tango升级到运输时间尺度
Global gyrokinetic simulations of ASDEX Upgrade up to the transport time-scale with GENE-Tango
论文作者
论文摘要
对运输时间尺度的湍流的准确描述对于预测核心等离子体概况并为设计高级场景和未来设备提供可靠的计算至关重要。在这里,我们利用了湍流和运输时间尺度之间的间隙分离,并将全局陀螺仪代码基因与运输垫探戈(Tango)相结合,包括动力学电子,碰撞,现实的几何形状,环形旋转和电磁效应。这种方法克服了陀螺仪代码的局限性,并在实验相关的等离子体条件下实现了高保真概况计算,从而大大降低了计算成本。 我们提出了两个ASDEX升级放电的Gene-Tango的数值结果,其中一种显示出未由TGLF-ASTRA再现的离子温度曲线的明显峰值。我们表明,基因tango可以正确捕获实验中观察到的离子温度峰值。通过在基因模拟中保留不同的物理效应,例如碰撞,环形旋转和电磁效应,我们证明了离子温度谱的峰值是由于下边缘MHD不稳定的电磁作用。基于这些结果,与单个陀螺仪仿真到运输时间尺度相比,ITER标准方案的预期基因tango速度大于两个数量级,这可能使得在当前计算资源上可行的第一原理ITER模拟。
An accurate description of turbulence up to the transport time scale is essential for predicting core plasma profiles and enabling reliable calculations for designing advanced scenarios and future devices. Here, we exploit the gap separation between turbulence and transport time scales and couple the global gyrokinetic code GENE to the transport-solver Tango, including kinetic electrons, collisions, realistic geometries, toroidal rotation and electromagnetic effects for the first time. This approach overcomes gyrokinetic codes' limitations and enables high-fidelity profile calculations in experimentally relevant plasma conditions, significantly reducing the computational cost. We present numerical results of GENE-Tango for two ASDEX Upgrade discharges, one of which exhibits a pronounced peaking of the ion temperature profile not reproduced by TGLF-ASTRA. We show that GENE-Tango can correctly capture the ion temperature peaking observed in the experiment. By retaining different physical effects in the GENE simulations, e.g., collisions, toroidal rotation and electromagnetic effects, we demonstrate that the ion temperature profile's peaking is due to electromagnetic effects of submarginal MHD instability. Based on these results, the expected GENE-Tango speedup for the ITER standard scenario is larger than two orders of magnitude compared to a single gyrokinetic simulation up to the transport time scale, possibly making first-principles ITER simulations feasible on current computing resources.