论文标题

在3D脑MRI中无监督的异常检测,并使用知识的训练数据深度学习

Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with impured training data

论文作者

Behrendt, Finn, Bengs, Marcel, Rogge, Frederik, Krüger, Julia, Opfer, Roland, Schlaefer, Alexander

论文摘要

磁共振成像(MRI) - 人类大脑中的病变检测仍然具有挑战性,耗时且容易出错。最近,无监督的异常检测(UAD)方法已显示出该任务的有希望的结果。这些方法依赖于仅包含健康样本的训练数据集。与受监督的方法相比,这大大减少了对大量标记培训数据的需求。但是,数据标记仍然容易出错。我们研究训练数据中的不健康样本如何影响大脑MRI扫描的异常检测性能。为了进行评估,我们将三个可公开的数据集考虑,并使用自动编码器(AE)作为UAD的公认基线方法。我们通过将不同数量的不健康样本注入来自T1加权MRI扫描的健康样本的训练集,从系统地评估了知识的培训数据的效果。我们评估了一种基于AE的重建误差期间直接识别错误标记样品的方法。我们的结果表明,使用知识数据的培训降低了UAD的性能,即使使用了很少的错误标记样本。通过基于重建损失的训练,直接执行离群值删除,我们证明可以检测到错误标记的数据并删除以减轻错误标记的数据的效果。总体而言,我们强调了在脑部MRI中清洁数据集对UAD的重要性,并展示了一种直接在训练期间直接检测错误标记数据的方法。

The detection of lesions in magnetic resonance imaging (MRI)-scans of human brains remains challenging, time-consuming and error-prone. Recently, unsupervised anomaly detection (UAD) methods have shown promising results for this task. These methods rely on training data sets that solely contain healthy samples. Compared to supervised approaches, this significantly reduces the need for an extensive amount of labeled training data. However, data labelling remains error-prone. We study how unhealthy samples within the training data affect anomaly detection performance for brain MRI-scans. For our evaluations, we consider three publicly available data sets and use autoencoders (AE) as a well-established baseline method for UAD. We systematically evaluate the effect of impured training data by injecting different quantities of unhealthy samples to our training set of healthy samples from T1-weighted MRI-scans. We evaluate a method to identify falsely labeled samples directly during training based on the reconstruction error of the AE. Our results show that training with impured data decreases the UAD performance notably even with few falsely labeled samples. By performing outlier removal directly during training based on the reconstruction-loss, we demonstrate that falsely labeled data can be detected and removed to mitigate the effect of falsely labeled data. Overall, we highlight the importance of clean data sets for UAD in brain MRI and demonstrate an approach for detecting falsely labeled data directly during training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源