论文标题
代表理论解释和插值属性不均匀旋转$ q $ - 惠泰克多项式
Representation theoretic interpretation and interpolation properties of inhomogeneous spin $q$-Whittaker polynomials
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We establish new properties of inhomogeneous spin $q$-Whittaker polynomials, which are symmetric polynomials generalizing $t=0$ Macdonald polynomials. We show that these polynomials are defined in terms of a vertex model, whose weights come not from an $R$-matrix, as is often the case, but from other intertwining operators of $U'_q(\hat{\mathfrak{sl}}_2)$-modules. Using this construction, we are able to prove a Cauchy-type identity for inhomogeneous spin $q$-Whittaker polynomials in full generality. Moreover, we are able to characterize spin $q$-Whittaker polynomials in terms of vanishing at certain points, and we find interpolation analogues of $q$-Whittaker and elementary symmetric polynomials.