论文标题
统一的熵和量子速度极限
Unified entropies and quantum speed limits for nonunitary dynamics
论文作者
论文摘要
我们讨论了一类基于统一量子($α,μ$)的量子速度限制(QSL) - 非单身物理过程的熵。边界均取决于shatten速度和进化状态的最小特征值和两种参数统一的熵。我们将这些结果专注于量子通道和非炎热的进化。在第一种情况下,QSL取决于与量子通道相关的kraus运算符,而在第二种情况下,速度限制是根据非铁官汉密尔顿的重铸。为了说明这些发现,我们考虑了在(i)振幅阻尼通道下演变的单量状态,以及(ii)由平均时间反转对称的非亚米特汉密尔顿人产生的非单身动力学。 QSL在较早的时间为非零,而随着进化状态的最小特征值接近零。此外,我们研究了量子多体系统减少动力学的统一熵与速度限制之间的相互作用。统一的熵是由系统的哈密顿量的量子波动的上限,而QSL是由非民主进化产生的纠缠时的非零。最后,我们将这些结果应用于XXZ模型,并验证QSL是否随着系统尺寸的增加而渐近下降。我们的结果发现了对多体系统的非平衡热力学,量子计量学和平衡的应用。
We discuss a class of quantum speed limits (QSLs) based on unified quantum ($α,μ$)-entropy for nonunitary physical processes. The bounds depend on both the Schatten speed and the smallest eigenvalue of the evolved state, and the two-parametric unified entropy. We specialize these results to quantum channels and non-Hermitian evolutions. In the first case, the QSL depends on the Kraus operators related to the quantum channel, while in the second case the speed limit is recast in terms of the non-Hermitian Hamiltonian. To illustrate these findings, we consider a single-qubit state evolving under the (i) amplitude damping channel, and (ii) the nonunitary dynamics generated by a parity-time-reversal symmetric non-Hermitian Hamiltonian. The QSL is nonzero at earlier times, while it becomes loose as the smallest eigenvalue of the evolved state approaches zero. Furthermore, we investigate the interplay between unified entropies and speed limits for the reduced dynamics of quantum many-body systems. The unified entropy is upper bounded by the quantum fluctuations of the Hamiltonian of the system, while the QSL is nonzero when entanglement is created by the nonunitary evolution. Finally, we apply these results to the XXZ model and verify that the QSL asymptotically decreases as the system size increases. Our results find applications to nonequilibrium thermodynamics, quantum metrology, and equilibration of many-body systems.