论文标题
部分可观测时空混沌系统的无模型预测
The Burge correspondence and crystal graphs
论文作者
论文摘要
Burge对应关系在简单标记的图与阈值形状的Semistandard Young Tableaux之间产生了两者。我们通过Burge Arrays上的峰值和山谷条件来表征挂钩形状的简单图。这是迈向Schensted插入结果的类似物的第一步,该结果指出单词最长增加的子字的长度是RSK通信下图Tableau最大行的长度。此外,我们在钩状的简单图上给出了一个晶体结构。该晶体中的极端矢量正是简单的图形序列是阈值和钩形的简单图。
The Burge correspondence yields a bijection between simple labelled graphs and semistandard Young tableaux of threshold shape. We characterize the simple graphs of hook shape by peak and valley conditions on Burge arrays. This is the first step towards an analogue of Schensted's result for the RSK insertion which states that the length of the longest increasing subword of a word is the length of the largest row of the tableau under the RSK correspondence. Furthermore, we give a crystal structure on simple graphs of hook shape. The extremal vectors in this crystal are precisely the simple graphs whose degree sequence are threshold and hook-shaped.