论文标题

确保对虚拟免疫组织化学深层生成网络中的准确污渍繁殖

Ensuring accurate stain reproduction in deep generative networks for virtual immunohistochemistry

论文作者

Walsh, Christopher D., Edwards, Joanne, Insall, Robert H.

论文摘要

免疫组织化学是癌症病理学的宝贵诊断工具。但是,它需要专业的实验室和设备,是耗时的,很难繁殖。因此,长期的目的是提供一种重现物理免疫组织化学污渍的数字方法。生成的对抗网络在将一种图像类型映射到另一种图像类型方面已变得极为先进,并显示出从降血石和曙红中推断免疫抑制剂的希望。但是,与病理图像一起使用时,它们具有很大的弱点,因为它们可以制造原始数据中不存在的结构。 Cyclegans可以减轻病理图像映射中发明的组织结构,但具有相关的处置以产生不准确的染色区域。在本文中,我们描述了Cyclean的损耗函数的修改,以通过在保留组织结构的同时实施逼真的染色复制来提高其病理图像的映射能力。我们的方法通过在模型培训期间考虑结构和染色来改善他人。我们使用Fréchet成立距离评估了我们的网络,再加上一种新技术,我们建议您评估虚拟免疫组织化学的准确性。这评估了通过颜色反卷积,阈值和Sorensen-DICE系数在推断和地面真实图像中的每个污渍分量之间的重叠。与真实AE1/AE3载玻片相比,我们修改的损耗函数导致虚拟染色的骰子系数。这优于未经改变的自行车的得分0.74。此外,我们的损失函数从76.47提高了重建的Fréchet成立距离。因此,我们描述了虚拟休息中的进步,可以扩展到其他免疫抑制剂和肿瘤类型,并在全球范围内提供可重复的,快速且易于访问的免疫组织化学。

Immunohistochemistry is a valuable diagnostic tool for cancer pathology. However, it requires specialist labs and equipment, is time-intensive, and is difficult to reproduce. Consequently, a long term aim is to provide a digital method of recreating physical immunohistochemical stains. Generative Adversarial Networks have become exceedingly advanced at mapping one image type to another and have shown promise at inferring immunostains from haematoxylin and eosin. However, they have a substantial weakness when used with pathology images as they can fabricate structures that are not present in the original data. CycleGANs can mitigate invented tissue structures in pathology image mapping but have a related disposition to generate areas of inaccurate staining. In this paper, we describe a modification to the loss function of a CycleGAN to improve its mapping ability for pathology images by enforcing realistic stain replication while retaining tissue structure. Our approach improves upon others by considering structure and staining during model training. We evaluated our network using the Fréchet Inception distance, coupled with a new technique that we propose to appraise the accuracy of virtual immunohistochemistry. This assesses the overlap between each stain component in the inferred and ground truth images through colour deconvolution, thresholding and the Sorensen-Dice coefficient. Our modified loss function resulted in a Dice coefficient for the virtual stain of 0.78 compared with the real AE1/AE3 slide. This was superior to the unaltered CycleGAN's score of 0.74. Additionally, our loss function improved the Fréchet Inception distance for the reconstruction to 74.54 from 76.47. We, therefore, describe an advance in virtual restaining that can extend to other immunostains and tumour types and deliver reproducible, fast and readily accessible immunohistochemistry worldwide.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源