论文标题
空间似然投票,自我知识蒸馏以弱监督对象检测
Spatial Likelihood Voting with Self-Knowledge Distillation for Weakly Supervised Object Detection
论文作者
论文摘要
弱监督的对象检测(WSOD)是一种仅使用图像级注释训练对象检测模型的有效方法,引起了研究人员的极大关注。但是,大多数基于多个实例学习(MIL)的现有方法倾向于将实例定位到显着对象的歧视部分,而不是所有对象的整个内容。在本文中,我们提出了一个WSOD框架,称为“空间可能性投票”(SLV-SD NET)。在此框架中,我们引入了空间似然投票(SLV)模块,以收敛区域建议本地化而无需限制框注释。具体而言,在培训期间的每一次迭代中,给定图像中的所有区域提案都作为选民投票支持空间维度中每个类别的可能性。在以较大的可能性值的情况下扩张该区域的对准后,投票结果被正式化为边界框,然后将其用于最终分类和定位。基于SLV,我们进一步提出了一个自我知识蒸馏(SD)模块,以完善给定图像的特征表示。 SLV模块生成的可能性地图用于监督骨干网络的功能学习,鼓励网络参与图像的更广泛,更多样化的领域。 Pascal VOC 2007/2012和MS-Coco数据集的广泛实验证明了SLV-SD网络的出色性能。此外,SLV-SD NET在这些基准测试中产生了新的最新结果。
Weakly supervised object detection (WSOD), which is an effective way to train an object detection model using only image-level annotations, has attracted considerable attention from researchers. However, most of the existing methods, which are based on multiple instance learning (MIL), tend to localize instances to the discriminative parts of salient objects instead of the entire content of all objects. In this paper, we propose a WSOD framework called the Spatial Likelihood Voting with Self-knowledge Distillation Network (SLV-SD Net). In this framework, we introduce a spatial likelihood voting (SLV) module to converge region proposal localization without bounding box annotations. Specifically, in every iteration during training, all the region proposals in a given image act as voters voting for the likelihood of each category in the spatial dimensions. After dilating the alignment on the area with large likelihood values, the voting results are regularized as bounding boxes, which are then used for the final classification and localization. Based on SLV, we further propose a self-knowledge distillation (SD) module to refine the feature representations of the given image. The likelihood maps generated by the SLV module are used to supervise the feature learning of the backbone network, encouraging the network to attend to wider and more diverse areas of the image. Extensive experiments on the PASCAL VOC 2007/2012 and MS-COCO datasets demonstrate the excellent performance of SLV-SD Net. In addition, SLV-SD Net produces new state-of-the-art results on these benchmarks.