论文标题
在现实的约束下,用图神经网络解决交流电源流
Solving AC Power Flow with Graph Neural Networks under Realistic Constraints
论文作者
论文摘要
在本文中,我们提出了一个图形神经网络体系结构,以在现实的约束下解决交流功率流问题。为了确保分配网格的安全且有弹性的运行,AC功率流计算是确定网格操作限制或分析计划程序中的网格资产利用的选择手段。在我们的方法中,我们演示了使用图形神经网络来了解功率流的物理约束的框架的开发。我们介绍了我们进行无监督培训的模型体系结构,以学习独立于用于培训的特定拓扑和供应任务的AC功率流配方的一般解决方案。最后,我们证明,验证和讨论我们在中型电压基准网格上的结果。在我们的方法中,我们专注于分布网格的物理和拓扑特性,以为真实网格拓扑提供可扩展的解决方案。因此,我们采用一种数据驱动的方法,使用由逼真的网格拓扑组成的大而多样的数据集,用于对AC功率流图神经网络架构的无监督训练,并将结果与先前的神经体系结构和牛顿 - 拉夫森方法进行比较。与最先进的求解器相比,我们的方法显示出很高的计算时间和良好准确性。从精度方面,它也超出了神经求解器的功率求解器。
In this paper, we propose a graph neural network architecture to solve the AC power flow problem under realistic constraints. To ensure a safe and resilient operation of distribution grids, AC power flow calculations are the means of choice to determine grid operating limits or analyze grid asset utilization in planning procedures. In our approach, we demonstrate the development of a framework that uses graph neural networks to learn the physical constraints of the power flow. We present our model architecture on which we perform unsupervised training to learn a general solution of the AC power flow formulation independent of the specific topologies and supply tasks used for training. Finally, we demonstrate, validate and discuss our results on medium voltage benchmark grids. In our approach, we focus on the physical and topological properties of distribution grids to provide scalable solutions for real grid topologies. Therefore, we take a data-driven approach, using large and diverse data sets consisting of realistic grid topologies, for the unsupervised training of the AC power flow graph neural network architecture and compare the results to a prior neural architecture and the Newton-Raphson method. Our approach shows a high increase in computation time and good accuracy compared to state-of-the-art solvers. It also out-performs that neural solver for power flow in terms of accuracy.