论文标题

从衍射旋转中进行关节深度和图像重建的端到端学习

End-to-end Learning for Joint Depth and Image Reconstruction from Diffracted Rotation

论文作者

Mel, Mazen, Siddiqui, Muhammad, Zanuttigh, Pietro

论文摘要

由于目前的问题的性质不佳,单眼深度估计仍然是一个开放的挑战。即使单个RGB输入图像中缺乏有意义且稳健的深度提示,基于深度学习的技术已经进行了广泛的研究和证明能够产生可接受的深度估计精度。使用相位和振幅掩码进行编码的基于孔径的方法,通过降低的图像质量的价格,通过深度依赖点扩展功能(PSF)编码2D图像中的强深度提示。在本文中,我们提出了一种新型的端到端学习方法,以从衍射旋转中进行深度。产生旋转点扩散函数(RPSF)作为散焦的函数的相掩码与深度估计神经网络的权重共同优化。为此,我们引入了孔掩模的可区分物理模型,并利用了相机成像管道的准确模拟。我们的方法需要一个明显较小的复杂模型和较少的训练数据,但它在室内基准的单眼深度估计任务中优于现有方法。此外,我们通过合并一个非盲图像脱张模块来解决图像降解的问题,以从其RPSF-Blurred对应物中恢复尖锐的全焦点图像。

Monocular depth estimation is still an open challenge due to the ill-posed nature of the problem at hand. Deep learning based techniques have been extensively studied and proved capable of producing acceptable depth estimation accuracy even if the lack of meaningful and robust depth cues within single RGB input images severally limits their performance. Coded aperture-based methods using phase and amplitude masks encode strong depth cues within 2D images by means of depth-dependent Point Spread Functions (PSFs) at the price of a reduced image quality. In this paper, we propose a novel end-to-end learning approach for depth from diffracted rotation. A phase mask that produces a Rotating Point Spread Function (RPSF) as a function of defocus is jointly optimized with the weights of a depth estimation neural network. To this aim, we introduce a differentiable physical model of the aperture mask and exploit an accurate simulation of the camera imaging pipeline. Our approach requires a significantly less complex model and less training data, yet it is superior to existing methods in the task of monocular depth estimation on indoor benchmarks. In addition, we address the problem of image degradation by incorporating a non-blind and non-uniform image deblurring module to recover the sharp all-in-focus image from its RPSF-blurred counterpart.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源