论文标题

关于有界半径和$ h $的图形的匹配剪切的复杂性

On The Complexity of Matching Cut for Graphs of Bounded Radius and $H$-Free Graphs

论文作者

Lucke, Felicia, Paulusma, Daniël, Ries, Bernard

论文摘要

对于连接的图形$ g =(v,e)$,如果断开$ g-m $,则匹配的$ m \ subseteq e $是$ g $的匹配切割。众所周知,对于整数$ d $,相应的决策问题匹配切割是可溶解的,对于直径图的多项式时间可解决,如果$ d \ leq 2 $,则最多可解决$ d $,如果$ d \ d \ geq 3 $,则可以解决。对于有界半径的图,我们证明了相同的二分法。对于图$ h $,如果不包含$ h $作为诱导子图,则图形为$ h $ free。由于我们的结果,我们可以以$ p_6 $ free图的方式解决多项式时间的匹配剪辑,从而扩展了Feghali的最新结果,以$ p_5 $ - free-free图。然后,我们将结果扩展到以$(SP_3+P_6)$ - 每$ s \ geq 0 $的免费图表,并启动以$ h $ free Graphs的匹配切割的复杂性分类。

For a connected graph $G=(V,E)$, a matching $M\subseteq E$ is a matching cut of $G$ if $G-M$ is disconnected. It is known that for an integer $d$, the corresponding decision problem Matching Cut is polynomial-time solvable for graphs of diameter at most $d$ if $d\leq 2$ and NP-complete if $d\geq 3$. We prove the same dichotomy for graphs of bounded radius. For a graph $H$, a graph is $H$-free if it does not contain $H$ as an induced subgraph. As a consequence of our result, we can solve Matching Cut in polynomial time for $P_6$-free graphs, extending a recent result of Feghali for $P_5$-free graphs. We then extend our result to hold even for $(sP_3+P_6)$-free graphs for every $s\geq 0$ and initiate a complexity classification of Matching Cut for $H$-free graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源