论文标题

将世界和自我模型分开

Separating the World and Ego Models for Self-Driving

论文作者

Sobal, Vlad, Canziani, Alfredo, Carion, Nicolas, Cho, Kyunghyun, LeCun, Yann

论文摘要

训练自动驾驶系统可以强大的驾驶场景的尾巴是一个关键问题。基于模型的方法利用模拟模拟,以模拟各种场景,而不会使用户处于现实世界中。忠实模拟的一个有希望的途径是训练世界的前向模型,以预测环境的未来状态和鉴于过去的状态和一系列行动。在本文中,我们认为,建模自我 - 汽车的状态通常具有简单,可预测和确定性的行为,这是有益的,与其他环境分开,这更复杂且高度多模式。我们建议使用一个简单且可区分的运动学模型对自我车辆进行建模,同时在国家的栅格表示上训练随机卷积前向模型,以预测其余环境的行为。我们探索了这种解耦模型的几种配置,并通过模型预测控制(MPC)和直接的策略学习评估其性能。我们测试了有关高速公路驾驶任务的方法,并证明了较低的崩溃率和更好的稳定性。该代码可从https://github.com/vladisai/pytorch-ppuu/tree/iclr2022获得。

Training self-driving systems to be robust to the long-tail of driving scenarios is a critical problem. Model-based approaches leverage simulation to emulate a wide range of scenarios without putting users at risk in the real world. One promising path to faithful simulation is to train a forward model of the world to predict the future states of both the environment and the ego-vehicle given past states and a sequence of actions. In this paper, we argue that it is beneficial to model the state of the ego-vehicle, which often has simple, predictable and deterministic behavior, separately from the rest of the environment, which is much more complex and highly multimodal. We propose to model the ego-vehicle using a simple and differentiable kinematic model, while training a stochastic convolutional forward model on raster representations of the state to predict the behavior of the rest of the environment. We explore several configurations of such decoupled models, and evaluate their performance both with Model Predictive Control (MPC) and direct policy learning. We test our methods on the task of highway driving and demonstrate lower crash rates and better stability. The code is available at https://github.com/vladisai/pytorch-PPUU/tree/ICLR2022.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源